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It can’t have escaped you, after so many recent reminders, that this year 
marks the one hundredth birthday of the light quantum. I thought I would 
tell you this morning a few things about its century long biography. Of course 
we have had light quanta on earth for eons, in fact ever since the good Lord 
said “let there be quantum electrodynamics” – which is a modern translation, 
of course, from the biblical Aramaic. So in this talk I’ll try to tell you what 
quantum optics is about, but there will hardly be enough time to tell you of 
the many new directions in which it has led us. Several of those are directions 
that we would scarcely have anticipated as all of this work started.

My own involvement in this subject began somewhere around the middle 
of the last century, but I would like to describe some of the background of 
the scene I entered at that point as a student. Let’s begin, for a moment, 
even before the quantum theory was set in motion by Planck. It is important 
to recall some of the remarkable things that were found in the 19th century, 
thanks principally to the work of Thomas Young and Augustin Fresnel. They 
established within the fi rst 20 years of the 19th century that light is a wave 
phenomenon, and that these waves, of whatever sort they might be, interpene-
trate one another like waves on the surface of a pond. The wave displace-
ments, in other words, add up algebraically. That’s called superposition, 
and it was found thus that if you have two waves that remain lastingly in step 
with one another, they can add up constructively, and thereby reinforce one 
another in some places, or they can even oscillate oppositely to one another, 
and thereby cancel one another out locally. That would be what we call de-
structive interference.

Interference phenomena were very well understood by about 1820. On 
the other hand it wasn’t at all understood what made up the underlying 
waves until the fundamental laws of electricity and magnetism were gathered 
together and augmented in a remarkable way by James Clerk Maxwell, who 
developed thereby the electrodynamics we know today. Maxwell’s theory 
showed that light waves consist of oscillating electric and magnetic fi elds. 
The theory has been so perfect in describing the dynamics of electricity and 
magnetism over laboratory scale distances, that it has remained precisely 
intact. It has needed no fundamental additions in the years since the 1860’s, 
apart from those concerning the quantum theory. It serves still, in fact, as the 
basis for the discussion and analysis of virtually all the optical instrumenta-



tion we have ever developed. That overwhelming and continuing success 
may eventually have led to a certain complacency. It seemed to imply that the 
fi eld of optics, by the middle of the 20th century, scarcely needed to take any 
notice of the granular nature of light. Studying the behavior of light quanta 
was then left to the atomic and elementary particle physicists – whose inter-
ests were largely directed toward other phenomena.

The story of the quantum theory, of course, really begins with Max Planck. 
Planck in 1900 was confronted with many measurements of the spectral 
distribution of the thermal radiation that is given off by a hot object. It was 
known that under ideally defi ned conditions, that is for complete (or black) 
absorbers and correspondingly perfect emitters this is a unique radiation 
distribution. The intensities of its color distribution, under such ideal condi-
tions, should depend only on temperature and not at all on the character 
of the materials that are doing the radiating. That defi nes the so-called 
black-body distribution. Planck, following others, tried fi nding a formula 
that expresses the shape of that black-body color spectrum. Something of its 
shape was known at low frequencies, and there was a good guess present for 
its shape at high frequencies.

The remarkable thing that Planck did fi rst was simply to devise an empiri-
cal formula that interpolates between those two extremes. It was a relatively 
simple formula and it involved one constant which he had to adjust in order 
to fi t the data at a single temperature. Then having done that, he found his 
formula worked at other temperatures. He presented the formula to the 
Germany Physical Society1 on October 19, 1900 and it turned out to be suc-
cessful in describing still newer data. Within a few weeks the formula seemed 
to be established as a uniquely correct expression for the spectral distribu-
tion of thermal radiation. 

The next question obviously was: did this formula have a logical derivation 
of any sort? There Planck, who was a sophisticated theorist, ran into a bit of 
trouble. First of all he understood from his thermodynamic background that 
he could base his discussion on nearly any model of matter, however oversim-
plifi ed it might be, as long as it absorbed and emitted light effi ciently. So he 
based his model on the mechanical system he understood best, a collection 
of one-dimensional harmonic oscillators, each of them oscillating rather like 
a weight at the end of a spring. They had to be electrically charged. He knew 
from Maxwell exactly how these charged oscillators interact with the electro-
magnetic fi eld. They both radiate and absorb in a way he could calculate. So 
then he ought to be able to fi nd the equilibrium between these oscillators 
and the radiation fi eld, which acted as a kind of thermal reservoir – and 
which he never made any claim to discuss in detail.

He found that he could not secure a derivation for his magic formula for 
the radiation distribution unless he made an assumption which, from a philo-
sophical standpoint, he found all but unacceptable. The assumption was that 
the harmonic oscillators he was discussing had to possess energies that were 
distributed, not as the continuous variables one expected, but confi ned in-
stead to discrete and regularly spaced values. The oscillators of frequency ν 
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would have to be restricted to energy values that were integer multiples, i.e. 
n-fold multiples (with n = 0, 1, 2, 3…) of something he called the quantum 
of energy, hν.

That number h was, in effect, the single number that he had to introduce 
in order to fi t his magic formula to the observed data at a single tempera-
ture. So he was saying, in effect, that these hypothetical harmonic oscilla-
tors representing a simplifi ed image of matter could have only a sequence 
amounting to a “ladder” of energy states. That assumption permits us to see 
immediately why the thermal radiation distribution must fall off rapidly with 
rising frequency. The energy steps between the oscillator states grow larger, 
according to his assumption, as you raise the frequency, but thermal excita-
tion energies, on the other hand, are quite restricted in magnitude at any 
fi xed temperature. High frequency oscillators at thermal equilibrium would 
never even reach the fi rst step of excitation. Hence there tends to be very 
little high frequency radiation present at thermal equilibrium. Planck pre-
sented this revolutionary suggestion2 to the Physical Society on December 
14, 1900, although he could scarcely believe it himself. 

The next great innovation came in 1905 from the young Albert Einstein, 
employed still at the Bern Patent Offi ce. Einstein fi rst observed that Planck’s 
formula for the entropy of the radiation distribution, when he examined its 
high frequency contributions, looked like the entropy of a perfect gas of free 
particles of energy hν. That was a suggestion that light itself might be discrete 
in nature, but hardly a conclusive one.

To reach a stronger conclusion he turned to an examination of the photo-
electric effect, which had fi rst been observed in 1887 by Heinrich Hertz. 
Shining monochromatic light on metal surfaces drives electrons out of the 
metals, but only if the frequency of the light exceeds a certain threshold 
value characteristic of each metal. It would have been most reasonable to 
expect that as you shine more intense light on those metals the electrons 
would come out faster, that is with higher velocities in response to the strong-
er oscillating electric fi elds – but they don’t. They come out always with the 
same velocities, provided that the incident light is of a frequency higher than 
the threshold frequency. If it were below that frequency there would be no 
photoelectrons at all.

The only response that the metals make to increasing the intensity of light 
lies in producing more photoelectrons. Einstein had a naively simple expla-
nation for that.3 The light itself, he assumed, consists of localized energy 
packets and each possesses one quantum of energy. When light strikes the 
metal, each packet is absorbed by a single electron. That electron then fl ies 
off with a unique energy, an energy which is just the packet energy hν minus 
whatever energy the electron needs to expend in order to escape the metal.

It took until about 1914–16 to secure an adequate verifi cation of Einstein’s 
law for the energies of the photoelectrons. When Millikan succeeded in doing 
that, it seemed clear that Einstein was right, and that light does indeed consist 
of quantized energy packets. It was thus Einstein who fathered the light quan-
tum, in one of the several seminal papers he wrote in the year 1905.
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To follow the history a bit further, Einstein began to realize in 1909 that 
his energy packets would have a momentum which, according to Maxwell, 
should be their energy divided by the velocity of light. These presumably 
localized packets would have to be emitted in single directions if they were 
to remain localized, or to constitute “Nadelstrahlung” (needle radiation), 
very different in behavior from the broadly continuous angular distribution 
of radiation that would spread from harmonic oscillators according to the 
Maxwell theory. A random distribution of these needle radiations could look 
appropriately continuous, but what was disturbing about that was the ran-
domness with which these needle radiations would have to appear. That was 
evidently the fi rst of the random variables in the quantum theory that began 
disturbing Einstein and kept nettling him for the rest of his life.

In 1916 Einstein found another and very much more congenial way of 
deriving Planck’s distribution by discussing the rate at which atoms radiate. 
Very little was known about atoms at that stage save that they must be capable 
of absorbing and giving off radiation. An atom lodged in a radiation fi eld 
would surely have its constituent charges shaken by the fi eld oscillations, 
and that shaking could lead either to the absorption of radiation or to the 
emission of still more radiation. Those were the processes of absorption or 
emission induced by the prior presence of radiation. But Einstein found that 
thermal equilibrium between matter and radiation could only be reached if, 
in addition to these induced processes, there exists also a spontaneous pro-
cess, one in which an excited atom emits radiation even in the absence of any 
prior radiation fi eld. It would be analogous to radioactive decays discovered 
by Rutherford. The rates at which these processes take place were governed 
by Einstein’s famous B and A coeffi cients respectively. The existence of spon-
taneous radiation turned out to be an important guide to the construction of 
quantum electrodynamics.

Some doubts about the quantized nature of light inevitably persisted, 
but many of them were dispelled by Compton’s discovery in 1922 that x-ray 
quanta are scattered by electrons according to the same rules as govern the 
collisions of billiard balls. They both obey the conservation rules for energy 
and momentum in much the same way. It became clear that the particle pic-
ture of light quanta, whatever were the dilemmas that accompanied it, was 
here to stay.

The next dramatic developments of the quantum theory, of course, took 
place between the years 1924 and 1926. They had the effect of ascribing to 
material particles such as electrons much of the same wave-like behavior as 
had long since been understood to characterize light. In those developments 
de Broglie, Heisenberg, Schrödinger and others accomplished literal mir-
ac les in explaining the structure of atoms. But however much this invention 
of modern quantum mechanics succeeded in laying the groundwork for a 
more general theory of the structure of matter, it seemed at fi rst to have little 
new bearing on the understanding of electromagnetic phenomena. The 
spontaneous emission of light persisted as an outstanding puzzle.

Thus there remained a period of a couple of years more in which we de-
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scribed radiation processes in terms that have usually been called “semiclas-
sical.” Now the term “classical” is an interesting one – because, as you know, 
every fi eld of study has its classics. Many of the classics that we are familiar 
with go back two or three thousand years in history. Some are less old, but 
all share an antique if not an ancient character. In physics we are a great deal 
more precise, as well as contemporary. Anything that we understood or could 
have understood prior to the date of Planck’s paper, December 14, 1900, is 
to us “classical.” Those understandings are our classics. It is the introduction 
of Planck’s constant that marks the transition from the classical era to our 
modern one.

The true “semiclassical era,” on the other hand, lasted only about two years. 
It ended formally with the discovery4 by Paul Dirac that one must treat the 
vacuum, that is to say empty space, as a dynamical system. The energy distrib-
uted through space in an electromagnetic fi eld had been shown by Maxwell 
to be a quadratic expression in the electric and magnetic fi eld strengths. 
Those quadratic expressions are formally identical in their structure to the 
mathematical expressions for the energies of mechanical harmonic oscilla-
tors. Dirac observed that even though there may not seem to be any orga-
nized fi elds present in the vacuum, those mathematically defi ned oscillators 
that described the fi eld energy would make contributions that could not be 
overlooked. The quantum mechanical nature of the oscillators would add an 
important but hitherto neglected correction to the argument of Planck.

Planck had said the energies of harmonic oscillators are restricted to values 
n times the quantum energy, hν, and the fully developed quantum mechanics 
had shown in fact that those energies are not nhν but (n + ½)hν. All of the in-
tervals between energy levels remained unchanged, but the quantum mech-
anical uncertainty principle required that additional ½ hν to be present. We 
can never have a harmonic oscillator completely empty of energy because 
that would require its position coordinate and its momentum simultaneously 
to have the precise values zero.

So, according to Dirac, the electromagnetic fi eld is made up of fi eld am-
plitudes that can oscillate harmonically. But these amplitudes, because of the 
ever-present half quantum of energy ½ hν, can never be permanently at rest. 
They must always have their fundamental excitations, the so-called “zero-
point fl uctuations” going on. The vacuum then is an active dynamical system. 
It is not empty. It is forever buzzing with weak electromagnetic fi elds. They 
are part of the ground state of emptiness. We can withdraw no energy at all 
from those fl uctuating electromagnetic fi elds. We have to regard them none-
theless as real and present even though we are denied any way of perceiving 
them directly. 

An immediate consequence of this picture was the unifi cation of the notions 
of spontaneous and induced emission. Spontaneous emission is emission in-
duced by those zero-point oscillations of the electromagnetic fi eld. Furthermore 
it furnishes, in a sense, an indirect way of perceiving the zero-point fl uctuations 
by amplifying them. Quantum amplifi ers tend to generate background noise 
that consists of radiation induced by those vacuum fl uctuations.
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It is worth pointing out a small shift in terminology that took place in the 
late 1920’s. Once material particles were found to exhibit some of the wave-
like behavior of light quanta, it seemed appropriate to acknowledge that 
the light quanta themselves might be elementary particles, and to call them 
“photons” as suggested by G. N. Lewis in 1926. They seemed every bit as 
discrete as material particles, even if their existence was more transitory, and 
they were at times freely created or annihilated.

The countless optical experiments that had been performed by the middle 
of the 20th century were in one or another way based on detecting only the 
intensity of light. It may even have seemed there wasn’t anything else worth 
measuring. Furthermore those measurements were generally made with 
steady light beams traversing passive media. It proved quite easy therefore 
to describe those measurements in simple and essentially classical terms. A 
characteristic fi rst mathematical step was to split the expression for the oscil-
lating electric fi eld E into two complex conjugate terms

E = E(+) + E(–), (1)

E(–) = (E(+))*, (2)

with the understanding that E(+) contains only positive frequency terms, i.e. 
those varying as e – iω t for all ω > 0, and E(–) contains only negative frequency 
terms e i ωt . This is a separation familiar to electrical engineers and motivated 
entirely by the mathematical convenience of dealing with exponential func-
tions. It has no physical motivation in the context of classical theory, since 
the two complex fi elds E(±) are physically equivalent. They furnish identical 
descriptions of classical theory.

Each of the fi elds E(±)(rt) depends in general on both the space coordinate 
r and time t. The instantaneous fi eld intensity at r,t would then be

| E(+)(r,t) | 2 = E(–)(r,t)E(+)(r,t). (3)

In practice it was always an average intensity that was measured, usually a 
time average.

The truly ingenious element of many optical experiments, going all the 
way back to Young’s double-pinhole experiment, was the means their design 
afforded to superpose the fi elds arriving at different space-time points before 
the intensity observations were made. Thus in Young’s experiment, shown in 
Figure 1, light penetrating a single pinhole in the fi rst screen passes through 
two pinholes in the second screen and then is detected as it falls on a third 
screen. The fi eld E(+)(rt) at any point on the latter screen is the superposition 
of two waves radiated from the two prior pinholes with a slight difference in 
their arrival times at the third screen, due to the slightly different distances 
they have to travel.

If we wanted to discuss the resulting light intensities in detail we would 
fi nd it most convenient to do that in terms of a fi eld correlation function 
which we shall defi ne as

G(1)(r1t1, r2t2) = E(–)(r1t1)E(+)(r2t2) . (4)
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This is a complex-valued function that depends, in general, on both space-
time points r1t1 and r2t2. The angular brackets ...  indicate that an average 
value is somehow taken, as we have noted. The average intensity of the fi eld 
at the single point rt is then just G(1)(rt,rt).

If the fi eld E(+)(rt) at any point on the third screen is given by the sum of 
two fi elds, i.e. proportional to E(+)(r1t1) + E(+)(r2t2), then it is easy to see that 
the average intensity at rt on the screen is given by a sum of four correlation 
functions,

G(1)(r1t1r1t1) + G(1)(r2t2r2t2) + G(1)(r1t1r2t2) + G(1)(r2t2r1t1). (5)

The fi rst two of these terms are the separate contributions of the two pin-
holes in the second screen, that is, the intensities they would contribute indi-
vidually if each alone were present. Those smooth intensity distributions are 
supplemented however by the latter two terms of the sum, which represent 
the characteristic interference effect of the superposed waves. They are the 
terms that lead to the intensity fringes observed by Young.

Intensity fringes of that sort assume the greatest possible contrast or visibil-
ity when the cross correlation terms like G(1)(r1t1r2t2) are as large in magni-
tude as possible. But there is a simple limitation imposed on the magnitude 
of such correlations by a familiar inequality. There is a formal sense in which 
cross correlation functions like G(1)(r1t1r2t2) are analogous to the scalar prod-
ucts of two vectors and are thus subject to a Schwarz inequality. The squared 
absolute value of that correlation function can then never exceed the prod-
uct of the two intensities. If we let x abbreviate a coordinate pair r,t, we must 
have

| G(1)(x1x2) | 2 ≤  G(1)(x1x1)G(1)(x2x2). (6)

The upper bound to the cross-correlation is attained if we have

| G(1)(x1x2) | 2 = G(1)(x1x1)G(1)(x2x2), (7)

and with it we achieve maximum fringe contrast. We shall then speak of the 
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Figure 1. Young’s experiment. Light passing through a pinhole in the fi rst screen falls on 
two closely spaced pinholes in a second screen. The superposition of the waves radiated 
by those pinholes at r1 and r2 leads to interference fringes seen at points r on the third 
screen.
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fi elds at x1 and x2 as being optically coherent with one another. That is the 
defi nition of relative coherence that optics has traditionally used.5

There is another way of stating the condition for optical coherence that 
is also quite useful, particularly when we are discussing coherence at pairs 
of points extending over some specifi ed region in space-time. Let us assume 
that it is possible to fi nd a positive frequency fi eld ε(rt) satisfying the appro-
priate Maxwell equations and such that the correlation function (4) factor-
izes into the form

G(1)(r1t1,r2t2) = ε*(r1t1)ε(r2t2). (8)

While the necessity of this factorization property requires a bit of proof, 6 it 
is at least clear that it does bring about the optical coherence that we have 
defi ned by means of the upper bound in the inequality (6) since in that case 
we have

| G(1)(r1 t1r2 t2) | 2 = | ε(r1t1) | 2 | ε(r2t2) | 2. (9)

In the quantum theory, physical variables such as E(+–)(rt) are associated, 
not with simple complex numbers, but with operators on the Hilbert-space 
vectors  that represent the state of the system, which in the present case 
is the electromagnetic fi eld. Multiplication of the operators E(+)(r1t1) and 
E(–)(r2t2) is not in general commutative, and the two operators can be dem-
onstrated to act in altogether different ways on the vectors  that represent 
the state of the fi eld. The operator E(+), in particular, can be shown to be an 
annihilation operator. It lowers by one the number of quanta present in the 
fi eld. Applied to an n-photon state, n , it reduces it to an n – 1 photon state, 

1n − . Further applications of E(+)(rt) keep reducing the number of quanta 
present still further, but the sequence must end with the n = 0 or vacuum 
state, | vac 〉, in which there are no quanta left. In that state we must fi nally 
have

E(+)(rt) | vacc = 0. (10)

The operator adjoint to E(+), which is E(–) must have the property of raising 
an n-photon state to an n + 1 photon state, so we may be sure, for example, 
that the state E(–)(rt) | vac  is a one-photon state. Since the vacuum state can 
not be reached by raising the number of photons, we must also require the 
relation

vvac | E(–)(rt) = 0, (11)

which is adjoint to Eq. (10).
The results of quantum measurements often depend on the way in which 

the measurements are carried out. The most useful and informative ways of 
discussing such experiments are usually those based on the physics of the 
measurement process itself. To discuss measurements of the intensity of light 
then we should understand the functioning of the device that detects or 
counts photons.

Such devices generally work by absorbing quanta and registering each 
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such absorption process, for example, by the detection of an emitted photo-
electron. We need not go into any of the details of the photoabsorption 
process to see the general nature of the expression for the photon counting 
probability. All we need to assume is that our idealized detector at the point 
r has negligibly small size and has a photo-absorption probability that is in-
dependent of frequency so that it can be regarded as probing the fi eld at a 
well-defi ned time t. Then if the fi eld makes a transition from an initial state 
i  to a fi nal state f  in which there is one photon fewer, the probability 

amplitude for that particular transition is given by the scalar product – or 
matrix element

f E(+)(rt) i . (12)

To fi nd the total transition probability we must fi nd the squared modulus of 
this amplitude and sum it over the complete set of possible fi nal states f  
for the fi eld. The expression for the completeness of the set of states f  is

∑
f

f f  = 1,

so that we then have a total transition probability proportional to

∑
f

| f E(+)(rt) i | 2 = ∑
f

i E(–)(rt) f f E(+)(rt) i

= i E(–)(rt)E(+)(rt) i . (13)

It is worth repeating here that in the quantum theory the fi elds E(+–) are 
non-commuting operators rather than simple numbers. Thus one could not 
reverse their ordering in the expression (13) while preserving its meaning. 
In the classical theory we discussed earlier E(+) and E(–) are simple numbers 
that convey equivalent information. There is no physical distinction between 
photo-absorption and emission since there are no classical photons. The fact 
that the quantum energy hν vanishes for h → 0 removes any distinction be-
tween positive and negative values of the frequency variable.

The initial state of the fi eld in our photon counting experiment depends, 
of course, on the output of whatever light source we use, and very few sources 
produce pure quantum states of any sort. We must thus regard the state i  
as depending in general on some set of random and uncontrollable param-
eters characteristic of the source. The counting statistics we actually measure 
then may vary from one repetition of the experiment to another. The fi gure 
we would quote must be regarded as the average taken over these repetitions. 
The neatest way of specifying the random properties of the state i  is to de-
fi ne what von Neumann called the density operator

ρ = { i i }av,  (14)

which is the statistical average of the outer product of the vector i  with 
itself. That expression permits us to write the average of the counting prob-
ability as 
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{ i E(–)(rt)E(+)(rt) i }av = Trace{ρE(–)(rt)E(+)rt)}. (15)

Interference experiments like those of Young and Michelson, as we have 
noted earlier, often proceed by measuring the intensities of linear combina-
tions of the fi elds characteristic of two different space-time points. To fi nd 
the counting probability in a fi eld like E(+)(r1t1) + E(+)(r2t2), for example, we 
will need to know expressions like that of Eq. (15) but with two different 
space-time arguments r1t1 and r2t2. It is convenient then to defi ne the quan-
tum theoretical form of the correlation functions (4) as

G(1)(r1t1r2t2) = Trace{ρE(–)(r1t1)E(+)(r2t2)}. (16)

This function has the same scalar product structure as the classical function 
(4) and can be shown likewise to obey the inequality (6). Once again we can 
take the upper bound of the modulus of this cross-correlation function or 
equivalently the factorization condition (8) to defi ne optical coherence.

It is worth noting at this point that optical experiments aimed at achieving 
a high degree of coherence have almost always accomplished it by using the 
most nearly monochromatic light attainable. The reason for that is made 
clear by the factorization condition (8). These experiments were always 
based on steady or statistically stationary light sources. What we mean by a 
steady state is that the function G(1) with two different time arguments, t1 and 
t2, can in fact only depend on their difference t1–t2. Optical coherence then 
requires

G(1)(t1 – t2) = ε*(t1)ε(t2). (17)

The only possible solution of such a functional equation for the function 
ε(t) is one that oscillates with a single positive frequency. The requirement 
of monochromaticity thus follows from the limitation to steady sources. The 
factorization condition (8), on the other hand, defi nes optical coherence 
more generally for non-steady sources as well.

Although the energies of visible light quanta are quite small on the every-
day scale, techniques for detecting them individually have existed for many 
decades. The simplest methods are based on the photoelectric effect and the 
use of electron photomultipliers to produce well defi ned current pulses. The 
possibility of detecting individual quanta raises interesting questions con-
cerning their statistical distributions, distributions that should in principle 
be quite accessible to measurement. We might imagine, for example, putting 
a quantum counter in a given light beam and asking for the distribution of 
time intervals between successive counts. Statistical problems of that sort 
were never, to my knowledge, addressed until the importance of quantum 
correlations began to become clear in the 1950’s. Until that time virtually all 
optical experiments measured only average intensities or quantum counting 
rates, and the correlation function G(1) was all we needed to describe them. It 
was in that decade, however, that several new sorts of experiments requiring a 
more general approach were begun. That period seemed to mark the begin-
ning of quantum optics as a relatively new or rejuvenated fi eld. 
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In the experiment I found most interesting, R. Hanbury Brown and R. Q. 
Twiss developed a new form of interferometry.7 They were interested at fi rst 
in measuring the angular sizes of radio wave sources in the sky and found 
they could accomplish that by using two antennas, as shown in Figure 2, with 
a detector attached to each of them to remove the high-frequency oscilla-
tions of the fi eld. The noisy low frequency signals that were left were then 
sent to a central device that multiplied them together and recorded their 
time-averaged values. Each of the two detectors then was producing an out-
put proportional to the square of the incident fi eld, and the central device 
was recording a quantity that was quartic in the fi eld strengths.

It is easy to show, by using classical expressions for the fi eld strengths, 
that the quartic expression contains a measurable interference term, and 
by exploiting it Hanbury Brown and Twiss did measure the angular sizes 
of many radio sources. They then asked themselves whether they couldn’t 
perform the same sort of “intensity interferometry” with visible light, and 
thereby measure the angular diameters of visible stars. Although it seemed 
altogether logical that they could do that, the interference effect would have 
to involve the detection of pairs of photons and they were evidently inhibited 
in imagining the required interference effect by a statement Dirac makes in 
the fi rst chapter of his famous textbook on quantum mechanics.8 In it he is 
discussing why one sees intensity fringes in the Michelson interferometer, 

D1
D2M

Signal

Figure 2. The intensity interferometry scheme of Hanbury Brown and Twiss. Radio frequen-
cy waves are received and detected at two antennas. The fi ltered low-frequency signals that 
result are sent to a device that furnishes an output proportional to their product.
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and says in ringingly clear terms “Each photon then interferes only with it-
self. Interference between two different photons never occurs.”

It is worth recalling at this point that interference simply means that the 
probability amplitudes for alternative and indistinguishable histories must be 
added together algebraically. It is not the photons that interfere physically, 
it is their probability amplitudes that interfere – and probability amplitudes 
can be defi ned equally well for arbitrary numbers of photons.

Evidently Hanbury Brown and Twiss remained uncertain on this point 
and undertook an experiment9 to determine whether pairs of photons can 
indeed interfere. Their experimental arrangement is shown in Figure 3. The 
light source is an extremely monochromatic discharge tube. The light from 
that source is collimated and sent to a half-silvered mirror which sends the 
separated beams to two separate photo-detectors. The more or less random 
output signals of those two detectors are multiplied together, as they were in 
the radiofrequency experiments, and then averaged. The resulting averages 
showed a slight tendency for both of the photo-detectors to register photons 
simultaneously (Figure 4). The effect could be removed by displacing one 
of the counters and thus introducing an effective time delay between them. 
The coincidence effect thus observed was greatly weakened by the poor time 
resolution of the detectors, but it raised considerable surprise nonetheless. 
The observation of temporal correlations between photons in a steady beam 
was something altogether new. The experiment has been repeated several 
times, with better resolution, and the correlation effect has emerged in each 
case more clearly.10

The correlation effect was enough of a surprise to call for a clear explana-
tion. The closest it came to that was a clever argument11 by Purcell who used 
the semi-classical form of the radiation theory in conjunction with a formula 
for the relaxation time of radiofrequency noise developed in wartime radar 

Figure 3. The Hanbury Brown-Twiss photon correlation experiment. Light from an ex-
tremely monochromatic discharge tube falls on a half-silvered mirror which sends the split 
beam to two separate photo-detectors. The random photocurrents from the two detectors 
are multiplied together and then averaged. The variable time delay indicated is actually 
achieved by varying the distance of the detector D2 from the mirror.
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studies. It seemed to indicate that the photon correlation time would be in-
creased by just using a more monochromatic light source.

The late 1950’s were, of course, the time in which the laser was being 
developed, but it was not until 1960 that the helium-neon laser12 was on the 
scene with its extremely monochromatic and stable beams. The question 
then arose: what are the correlations of the photons in a laser beam? Would 
they extend, as one might guess, over much longer time intervals as the beam 
became more monochromatic? I puzzled over the question for some time, I 
must admit, since it seemed to me, even without any detailed theory of the 
laser mechanism, that there would not be any such extended correlation.

The oscillating electric current that radiates light in a laser tube is not a 
current of free charges. It is a polarization current of bound charges oscil-
lating in a direction perpendicular to the axis of the tube (Figure 5). If it is 
suffi ciently strong it can be regarded as a predetermined classical current, 
one that suffers negligible recoil when individual photons are emitted. Such 
currents, I knew,13 emitted Poisson distributions of photons, which indicated 
clearly that the photons were statistically independent of one another. It 
seemed then that a laser beam would show no Hanbury Brown-Twiss photon 
correlations at all.

How then would one describe the delayed-coincidence counting measure-
ment of Hanbury Brown and Twiss? If the two photon counters are sensitive 
at the space-time points r1t1 and r2t2 we will need to make use of the annihila-
tion operators E(+)(r1t1) and E(+)(r2t2)(which do, in fact commute). The amp-
litude for the fi eld to go from the state i  to a state f  with two quanta 
fewer is

f  E(+)(r2t2)E(+)(r1t1) i . (18)

When this expression is squared, summed over fi nal states f  and averaged 

Figure 4. The photon coincidence rate measured rises slightly above the constant back-
ground of accidental coincidences for suffi ciently small time delays. The observed rise was 
actually weakened in magnitude and extended over longer time delays by the relatively 
slow response of the photo-detectors. With ideal detectors it would take the more sharply 
peaked form shown.
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over the initial states i  we have a new kind of correlation function that we 
can write as

G(2)(r1t1r2t2r2t2r1t1) = Trace{ρE(–)(r1t1)E(–)(r2t2)E(+)(r2t2)E(+)(r1t1)}.
 (19)

This is a special case of a somewhat more general second order correlation 
function that we can write (with the abbreviation xj = rjtj) as

G(2)(x1x2x3x4) = Trace{ρE(–)(x1)E(–)(x2)E(+)(x3)E(+)(x4)}. (20)

Now Hanbury Brown and Twiss had seen to it that the beams falling on their 
two detectors were as coherent as possible in the usual optical sense. The 
function G(1) should thus have satisfi ed the factorization condition (8), but 
that statement doesn’t at all imply any corresponding factorization property 
of the functions G(2) given by Eqs. (19) or (20). 

We are free to defi ne a kind of second-order coherence by requiring a 
parallel factorization of G(2),

G(2)(x1x2x3x4) = ε*(x1)ε*(x2)ε(x3)ε(x4), (21)

and the defi nition can be a useful one even though the Hanbury Brown-
Twiss correlation assures us that no such factorization is present in their ex-
periment. If it were present the coincidence rate according to Eq. (21) would 
be proportional to 

G(2)(x1x2x2x1) = G(1)(x1x1) G(1)(x2x2), (22)

that is, to the product of the two average intensities measured separately 
– and that is what was not found. Ordinary light beams, that is, light from 
ordinary sources, even extremely monochromatic ones as in the Hanbury 
Brown-Twiss experiment, do not have any such second order coherence.

We can go on defi ning still higher-order forms of coherence by defi ning 
n-th order correlation functions G(n) that depend on 2n space-time coordi-
nates. The usefulness of such functions may not be clear since carrying out 
the n-fold delayed coincidence counting experiments that measure them 
would be quite diffi cult in practice. It is nonetheless useful to discuss such 
functions since they do turn out to play an essential role in most calculations 
of the statistical distributions of photons. If we turn on a photon counter for 

Figure 5. Schematic picture of a gas laser. The standing light wave in the discharge tube 
generates an intense transverse polarization current in the gas. Its oscillation sustains the 
standing wave and generates the radiated beam.
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any given length of time, for example, the number of photons it records will 
be a random integer. Repeating the experiment many times will lead us to 
a distribution function for that number. To predict those distributions14 we 
need, in general, to know the correlation functions G(n) of arbitrary orders.

Once we are defi ning higher order forms of coherence, it is worth asking 
whether we can fi nd fi elds that lead to factorization of the complete set of 
correlation functions G(n). If so, we could speak of those as possessing full 
coherence. Now, are there any such states of the fi eld? In fact there are lots 
of them, and some can describe precisely the fi elds generated by predeter-
mined classical current distributions. These fi elds have the remarkable prop-
erty that annihilating a single quantum in them by means of the operator E(+) 

leaves the fi eld essentially unchanged. It just multiplies the state vector by an 
ordinary number. That is a relation we can write as

E(+)(rt)  = ε(rt) , (23)

where ε(rt) is a positive frequency function of the space-time point rt. It is 
immediately clear that such states must have indefi nite numbers of quanta 
present. Only in that way can they remain unchanged when one quantum is 
removed. This remarkable relation does in fact hold for all of the quantum 
states radiated by a classical current distribution, and in that case the func-
tion ε(rt) happens to be the classical solution for the electric fi eld.

Any state vector that obeys the relation (23) will also obey the adjoint rela-
tion 

E(–)(rt) = ε*(rt) . (24)

Hence the n-th order correlation function will indeed factorize into the 
form

G(n)(x1….x2n) = ε*(x1)….ε*(xn)ε(xn+1)….ε(x2n) (25)

that we require for n-th order coherence. Such states represent fully coher-
ent fi elds, and delayed coincidence counting measurements carried out in 
them will reveal no photon correlations at all. To explain, for example, the 
Hanbury Brown-Twiss correlations we must use not pure coherent states but 
mixtures of them, for which the factorization conditions like Eq. (25) no 
longer hold. To see how these mixtures arise, it helps to discuss the modes of 
oscillation of the fi eld individually.

The electromagnetic fi eld in free space has a continuum of possible 
frequencies of oscillation, and a continuum of available modes of spatial 
oscillation at any given frequency. It is often simpler, instead of discussing 
all these modes at once, to isolate a single mode and discuss the behavior of 
that one alone. The fi eld as a whole is then a sum of the contributions of the 
individual modes. In fact when experiments are carried out within refl ecting 
enclosures the fi eld modes form a discrete set, and their contributions are 
often physically separable.

The oscillations of a single mode of the fi eld, as we have noted earlier, are 
essentially the same as those of a harmonic oscillator. The n-th excitation 
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state of the oscillator represents the presence of exactly n light quanta in that 
mode. The operator that decreases the quantum number of the oscillator 
is usually written as a , and the adjoint operator – which raises the quantum 
number by one unit as a †. These operators then obey the relation

a a † – a † a  = 1, (26)

which shows that their multiplication is not commutative. We can take the 
fi eld operator E(+)(rt) for the mode we are studying to be proportional to the 
operator a. Then any state vector for the mode that obeys the relation (23) 
will have the property

a  = α  (27)

where α is some complex number. It is not diffi cult to solve for the state 
vectors that satisfy the relation (27) for any given value of α. They can be 
expressed as a sum taken over all possible quantum-number states n , n = 0, 
1, 2…. that takes the form

α  = e
– 1
2

|
 
α

 
| 2 ∑

∞

=0n

n

n!

α
n , (28)

in which we have chosen to label the state with the arbitrary complex param-
eter α. The states α  are fully coherent states of the fi eld mode.

The squared moduli of the coeffi cients of the states n  in Eq. (28) tell us 
the probability for the presence of n quanta in the mode, and those numbers 
do indeed form a Poisson distribution, one with the mean value of n equal to 
| α |2. The coherent states form a complete set of states in the sense that any 
state of the mode can be expressed as a suitable sum taken over them. As we 
have defi ned them they are equivalent to certain oscillator states defi ned by 
Schrödinger15 in his earliest discussions of wave functions. Known thus from 
the very beginning of wave mechanics, they seemed not to have found any 
important role in the earlier development of the theory.

Coherent excitations of fi elds have a particularly simple way of combining. 
Let us suppose that one excitation mechanism brings a fi eld mode from its 
empty state 0  to the coherent state 1α . A second mechanism could bring 
it, for example, from the state 0  to the state 2α . If the two mechanisms 
act simultaneously the resulting state can be written as e iϕ

1 2α α+  where e iϕ is 
a phase factor that depends on α1 and α2 , but we don’t need to know it since 
it cancels out of the expression for the density operator

ρ = α1+ α2 α1 + α2 . (29)

This relation embodies the superposition principle for fi eld excitations and 
tells us all about the resulting quantum statistics. It is easily generalized to 
treat the superposition of many excitations. If, say, j  coherent excitations 
were present, we should have a density operator

ρ = 
1 ... jα α+ + 1 ... jα α+ + . (30)

Let us suppose now that the individual excitation amplitudes αj are in one 
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or another sense random complex numbers. Then the sum α1+ ... + αj will 
describe a suitably defi ned random walk in the complex plane. In the limit j 
→ ∞ the probability distribution for the sum α = α1+ ... + αj will be given by 
a Gaussian distribution which we can write as 

P(α) = 
1

nπ
e          ,

in which the mean value of | α |2 which has been written as n , is the mean 
number of quanta in the mode.

The density operator that describes this sort of random excitation is a 
probabilistic mixture of coherent states,

ρ = 
1

nπ
 ∫  e α α d 2α,

where d 2α is an element of area in the complex plane. When we express ρ 
in terms of m-quantum states by using the expansion (28) we fi nd

ρ = 
1

1 n+ 0m

∞

=
∑ 1

n

n

⎛ ⎞
⎜ ⎟⎜ ⎟+⎝ ⎠

m
m m . (33)

This kind of random excitation mechanism is thus always associated with a 
geometrical or fi xed-ratio distribution of quantum numbers (Figure 6). In 
the best known example of the latter, the Planck distribution, we have n =

1
h
kTe
ν⎛ ⎞

−⎜ ⎟
⎝ ⎠

1−
, and the density operator (33) then contains the familiar 

thermal weights e
– 
mhv
kT .

P(n)

n
Figure 6. Geometrical or fi xed-ratio sequence of probabilities for the presence of n quanta 
in a mode that is excited chaotically.
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〈n〉
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There is something remarkably universal about the geometrical sequence 
of n-quantum probabilities. The image of chaotic excitation we have derived it 
from, on the other hand, excitation in effect by a random collection of lasers, 
may well seem rather specialized. It may be useful therefore to have a more 
general way of characterizing the same distribution. If a quantum state is speci-
fi ed by the density operator ρ, we may associate with it an entropy S given by

S = -Trace(ρ log ρ), (34)

which is a measure, roughly speaking, of the disorder characteristic of the 
state. The most disordered, or chaotic, state is reached by maximizing S, but 
in fi nding the maximum we must observe two constraints. The fi rst is

Trace ρ = 1, (35)

which says simply that all probabilities add up to one. The second is

Trace (ρ a †a) = n , (36)

which fi xes the average occupation number of the mode.
When S is maximized, subject to these two constraints, we fi nd indeed that 

the density operator ρ takes the form given by Eq. (33). The geometrical dis-
tribution is thus uniquely representative of chaotic excitation. Most ordinary 
light sources consist of vast numbers of atoms radiating as nearly indepen-
dently of one another as the fi eld equations will permit. It should be no sur-
prise then that these are largely maximum entropy or chaotic sources. When 
many modes are excited, the light they radiate is, in effect, colored noise and 
indistinguishable from appropriately fi ltered black body radiation.

For chaotic sources, the density operator (32) permits us to evaluate all of 
the higher order correlation functions G(n)(x1…x2n). In fact they can all be 
reduced14 to sums of products of fi rst order correlation functions G(1)(xixj). 
In particular, for example, the Hanbury Brown-Twiss coincidence rate corre-
sponding to the two space time points x1 and x2 can be written as

G(2)(x1x2x2x1) = G(1)(x1x1)G(1)(x2x2) + G(1)(x1x2)G(1)(x2x1). (37)

The fi rst of the two terms on the right side of this equation is simply the 
product of the two counting rates that would be measured at x1 and x2 in-
dependently. The second term is the additional delayed coincidence rate 
detected fi rst by Hanbury Brown and Twiss, and it is indeed contributed by 
a two-photon interference effect. If we let x1 = x2, which corresponds to zero 
time delay in their experiment, we see that

G(2)(x1x1x1x1) = 2{G(1)(x1x1)}2, (38)

or the coincidence rate for vanishing time delay should be double the back-
ground or accidental rate.

The Gaussian representation of the density operator in terms of coherent 
states is an example of a broader class of so-called “diagonal representations” 
that are quite convenient to use – when they are available. If the density op-
erator for a single mode, for example, can be written in the form
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ρ = ∫ P(α) α α d2α (39)

then the expectation values of operator products like a†nam can be evaluated 
as simple integrals over the function P such as 

{a†nam}av = ∫ P(α)α*nαmd2α . (40)

The function P(α) then takes on some of the role of a probability density, 
but that can be a bit misleading since the condition that the probabilities 
derived from ρ all be positive or zero does not require P(α) to be positive 
defi nite. It can and sometimes does take on negative values over limited areas 
of the α-plane in certain physical examples, and it may also be singular. It is a 
member, as we shall see, of a broader class of quasi-probability densities. The 
representation (39), the P-representation, unfortunately is not always avail-
able.16,17 It can not be defi ned, for example, for the familiar “squeezed” states 
of the fi eld in which one or the other of the complementary uncertainties is 
smaller than that of the coherent states.

The difference between a monochromatic laser beam and a chaotic beam 
is most easily expressed in terms of the function P(α). For a stationary laser 
beam the function P depends only on the magnitude of α and vanishes un-
less α assumes some fi xed value. A graph of that function P is shown in 
Figure 7, where it can be compared with the Gaussian function for the same 
mean occupation number n  given by Eq. (31).

How do we measure the statistical properties of photon distributions? A 
relatively simple way is to place a photon counter in a light beam behind ei-
ther a mechanical or an electrical shutter. If we open the shutter for a given 
length of time t, the counter will register some random number n of pho-
tons. By repeating that measurement suffi ciently many times we can establish 
a statistical distribution for those random integers n. The analysis necessary 
to derive this distribution mathematically can be a bit complicated since it re-

Figure 7. The quasiprobability function P(�α�) for a chaotic excitation is Gaussian in form, 
while for a stable laser beam it takes on non-zero values only near a fi xed value of � α �.

P
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quires, in general, a knowledge of all the higher order correlation functions. 
Experimental measurements of the distribution, conversely, can tell us about 
those correlation functions.

For the two cases in which we already know all the correlation functions, it is 
particularly easy to fi nd the photocount distributions. If the average rate at which 
photons are recorded is w, then the mean number recorded in time t  is 

n = wt .

In a coherent beam the result for the probability of n photocounts is just the 
Poisson distribution

pn(t) =          e–wt. (41)

In a chaotic beam, on the other hand, the probability of counting n quanta is 
given by the rather more spread-out distribution

pn(t) =           (         )n
. (42)

These results, which are fairly obvious from the occupation number prob-
abilities implicit in Eqs. (28) and (33), are illustrated in Figure 8.

Here is a closely related question that can also be investigated experimen-
tally without much diffi culty. If we open the shutter in front of the counter 
at an arbitrary moment, some random interval of time will pass before the 
fi rst photon is counted. What is the distribution of those random times? In a 
steady coherent beam, in fact, it is just an exponential distribution

Wcoh = we–wt  , (43)

while in a chaotic beam it assumes the less obvious form

Wch(t) =               . (44)

There is an alternative way of fi nding a distribution of time intervals. 
Instead of simply opening a shutter at an arbitrary moment, we can begin the 

Figure 8. The two P(�α�) dis-
tributions of Fig. 7 lead to 
different photon occupation 
number distributions p(n): for 
chaotic excitation a geometric 
distribution, for coherent exci-
tation a Poisson distribution.

p(n)

n

chaotic

coherent

(wt)n

n!

wt
1 + wt

1

1 + wt

w
(1 + wt )2
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measurement with the registration of a given photocount at time zero and 
then ask what is the distribution, of time intervals until the next photocount. 
This distribution, which we may write as W(0 | t), takes the same form for a 
coherent beam as it does for the measurement described earlier, which starts 
at arbitrary moments,

Wcoh(0 | t) = we–wt = Wcoh(t). (45)

This identity is simply a restatement of the statistically independent or uncor-
related quality of all photons in a coherent beam.

For a chaotic beam, on the other hand, the distribution Wch(o | t) takes a 
form quite different from Wch(t). It is

Wch(0 | t) =               , (46)

an expression which exceeds Wch(t) for times for which wt < 1, and is in fact 
twice as large as Wch(t) for t = 0 (Figure 9). The reason for that lies in the 
Gaussian distribution of amplitudes implicit in Eqs. (31) and (32). The very 
fact that we have counted a photon at t = 0 makes it more probable that 
the fi eld amplitude α has fl uctuated to a large value at that moment, and hence 
the probability for counting a second photon remains larger than average for 
some time later. The functions Wch(t) and Wch(0 | t) are compared in Figure 8.

All of the experiments we have discussed thus far are based on the proce-
dure of photon counting, whether with individual counters or with several 
of them arranged to be sensitive in delayed coincidence. The functions they 
measure, the correlation functions G(n), are all expectation values of products 
of fi eld operators written in a particular order. If one reads from right to left, 
the annihilation operator always precedes the creation operators in our corre-
lation functions, as they do, for example, in Eq. (19) for G(2). It is that so-called 
“normal ordering” that gives the coherent states, and the quasiprobability den-
sity P(α) the special roles they occupy in discussing this class of experiments.

But there are other kinds of expectation values that one sometimes needs 
in order to discuss other classes of experiments. These could, for example, 
involve symmetrically ordered sums of operator products, or even anti-nor-

Wch
Figure 9. Time interval 
distributions for counting 
experiments in a chaoti-
cally excited mode: Wch(t) 
is the distribution of in-
tervals from an arbitrary 
moment until the fi rst 
photocount. Wch(0 | t) is 
the distribution of inter-
vals between two successive 
photocounts.

2w
(1 + wt)3

Wch(0 | t)

Wch(t)
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mally ordered products which are opposite to the normally ordered ones. 
The commutation relations for the multiplication of fi eld operators will ulti-
mately relate all these expectation values to one another, but it is often pos-
sible to fi nd much simpler ways of evaluating them. There exists a quasiprob-
ability density that plays much the same role for symmetrized products as 
the function P does for the normally ordered ones. It is, in fact, the function 
Wigner18 devised in 1932 as a kind of quantum mechanical replacement for 
the classical phase space density. For anti-normally ordered operator prod-
ucts, the role of the quasiprobability density is taken over by the expectation

value which for a single mode is 1
π

α ρ α . The three quasiprobability

densities associated with the three operator orderings and whatever experi-
ments they describe are all members of a larger family that can be shown to 
have many properties in common.17 

The developments I have described to you were all relatively early ones 
in the development of the fi eld we now call quantum optics. The further 
developments that have come in rapid succession in recent years are too nu-
merous to recount here. Let me just mention a few. A great variety of careful 
measurements of photon counting distributions and correlations of the type 
we have discussed have been carried out19 and furnish clear agreement with 
the theory. They have furthermore shown in detail how the properties of la-
ser beams change as they rise in power from below threshold to above it.

The fully quantum mechanical theory of the laser was diffi cult to develop20 
since the laser is an intrinsically nonlinear device, but only through such a 
theory can its quantum noise properties be understood. The theories of a 
considerable assortment of other kinds of oscillators and amplifi ers have now 
been worked out.

Nonlinear optics has furnished us with new classes of quantum phenom-
ena such as parametric down conversion in which a single photon is split into 
a pair of highly correlated or entangled photons. Entanglement has been a 
rich source of the quantum phenomena that are perhaps most interesting 
– and baffl ing – in everyday terms.

It is worth emphasizing that the mathematical tools we have developed for 
dealing with light quanta can be applied equally well to the much broader 
class of particles obeying Bose-Einstein statistics. These include atoms of He4, 
Na23, Rb87, and all of the others which have recently been Bose-condensed by 
optical means. When proper account is taken of the atomic interactions and 
the non-vanishing atomic masses, the coherent state formalism is found to 
furnish useful descriptions of the behavior of these bosonic gases.

The formalism seems likewise to apply to subatomic particles, to bosons that 
are only short-lived. The pions that emerge by hundreds or even thousands 
from the high-energy collisions of heavy ions are also bosons. The pions of 
similar charge have a clearly noticeable tendency to be emitted with closely 
correlated momenta, an effect which is evidently analogous to the Hanbury 
Brown-Twiss correlation of photons, and invites the same sort of analysis.21
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Particles obeying Fermi-Dirac statistics, of course, behave quite differently 
from photons or pions. No more than a single one of them ever occupies any 
given quantum state. This kind of reckoning associated with fermion fi elds 
is radically different therefore from the sort we have associated with bosons, 
like photons. It has proved possible, nonetheless, to develop an algebraic 
scheme22 for calculating expectation values of products of fermion fi elds 
that is remarkably parallel to the one we have described for photon fi elds. 
There is a one-to-one correspondence between the mathematical operations 
and expressions for boson fi elds on the one hand and fermion fi elds on the 
other. That correspondence has promise of proving useful in describing the 
dynamics of degenerate fermion gases.

I’d like, as a fi nal note, to share with you an experience I had in 1951, while 
I was a postdoc at the Institute for Advanced Study in Princeton. Possessed by 
the habit of working late at night – in fact on photon statistics13 at the time 
– I didn’t often appear at my Institute desk early in the day. Occasionally 
I walked out to the Institute around noon, and that was closer to the end 
of the work day for Professor Einstein. Our paths thus crossed quite a few 
times, and on one of those occasions I had ventured to bring my camera. 
He seemed more than willing to let me take his picture as if acknowledging 

Figure 10. Professor Einstein, encountered in the spring of 1951 in Princeton, NJ.
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his role as a local landmark, and he stood for me just as rigidly still. Here, 
in Figure 10, is the hitherto unpublished result. I shall always treasure that 
image, and harbor the enduring wish I had been able to ask him just a few 
questions about that remarkable year, 1905.
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